АльфаОмега

база знаний!

Приветствую Вас, Гость | RSS
...
Форма входа
Логин:
Пароль:


Математика [3]Химия [1]
Информатика [1]Менеджмент [1]
Программирование [2]Педагогика [13]
Физика [6]Бренды [4]

Об одном методе построения математической модели линейного динамического объекта



Об одном методе построения математической модели линейного динамического объекта

 

В современном мире множество технологических, процессов, а также экономических и социальных систем могут быть представлены как некий линейный динамический объект, поэтому проблема создания адекватных математических моделей линейных динамических объектов является весьма актуальной. Существуют различные методы, решающие эту задачу, однако сам процесс моделирования зачастую достаточно трудоемкий (в основном за счет сложности выбора структуры модели) и требует больших затрат. В настоящей статье предложен подход, позволяющий упростить процесс выбора структуры модели объекта путем сочетания непараметрических и параметрических методов математического моделирования. Идея заключается в предварительном определении порядка дифференциального уравнения, описывающего объект и последующем использовании полученной информации в создании параметрической модели. Порядок уравнения предлагается определять путем построения регрессионной непараметрической модели между входными и выходными сигналами объекта, после чего задача моделирования сводится к определению значений параметров параметрической модели известными методами, например, методом наименьших квадратов.

1. Построение непараметрической оценки регрессии

Прежде всего, необходимо указать, какой априорной информацией об объекте располагает исследователь. В данной работе рассматриваются объекты (процессы), относящиеся к классу линейных динамических (эти сведения априори имеются). Какой-либо другой информации о структуре объекта нет. Предполагается также, что существует возможность измерения входного сигнала u , поступающего на объект (объект представляет собой лишь некоторую часть более сложного процесса, в который исследователь не вмешивается, таким образом, поступающие на вход объекта данные не зависят от воли экспериментатора и могут быть лишь измерены), а также сигнала, полученного на выходе x (реакция объекта на входное воздействие). Измерения производятся в моменты времени t(i) со случайными помехами. Остановимся кратко на вопросе построения непараметрической оценки кривой регрессии. Принципиальное отличие таких методов оценивания от параметрических заключается в том, что последние требуют знание структуры исследуемого объекта (процесса) с точностью до набора параметров и направлены на определение неизвестных параметров (при этом используются выборочные данные). Непараметрический подход позволяет отказаться от выбора структуры объекта и требует только наличия адекватной информативной выборки. В данной работе используется понятие непараметрической оценки регрессии, аппроксимирующей неизвестные стохастические зависимости по наблюдениям. Ставится задача построения оценки неизвестной зависимости между входным и выходным сигналами объекта при любом входном значении сигнала (априори вид стохастической зависимости не задан, предполагается, что она однозначная). Непараметрическая (ядерная) оценка регрессии, основанная на использовании широко известной оценки плотности распределения Розенблатта-Парзена, носит имя Надарая-Ватсона. Идея, лежащая в основе, состоит в придании относительно большего веса наблюдениям, ближайшим к оцениваемой точке в смысле расстояния, определяемого ядром. Функция – ядро (колоколообразная, дельтаобразная функция) –удовлетворяет некоторым условиям сходимости, влияние же вида ядра на точность оценивания незначительно. В данной работе использовалось параболическое ядро. В настоящей работе использовался метод случайного спуска, где в качестве алгоритма поиска локального минимума был выбран последовательный симплексный метод. Отметим, что в случае больших помех, действующих в каналах измерений, целесообразно для настройки параметра c коэффициента размытости для каждого входного воздействия использовать другой критерий качества. Этот критерий получается из квадратичного интегрального критерия качества раскрытием квадрата разности.

2. Определение порядка дифференциального уравнения объекта

Первая часть предложенного в работе метода построения математической модели линейного динамического объекта основана на определении порядка дифференциального уравнения, описывающего объект исследования, используя методы непараметрической аппроксимации стохастической зависимости входного (в общем случае входных) и выходного (выходных) сигналов. По выборочным данным строится непараметрическая оценка регрессия, где в качестве аргументов используется как входное воздействие на текущем шаге, так и значения выходного сигнала на предыдущих шагах. Такой подход позволяет учитывать динамику объекта, так как значения выходного сигнала объекта на нескольких шагах, являясь аргументами оценки регрессии на последующих шагах, влияют на оценку выхода. Число предыдущих шагов, включаемых в модель, является аналогом порядка дифференциального уравнения: чем выше порядок, тем длиннее период функционирования объекта, влияющий на последующее его поведение, и тем больше данных, полученных на предыдущих шагах, мы должны учитывать. Первоначально по выборке строится оценка регрессии, где в качестве аргументов используются входной (входные) и выходной сигналы объекта, а также значение выхода объекта в предыдущий момент времени (двумерная оценка регрессии). Минимизация критерия по двум параметрам дает оптимальные значения коэффициентов размытости, а значение критерия является минимальной среднеквадратичной ошибкой и может быть использовано как показатель адекватности построенной непараметрической модели объекта (если это значение устраивает исследователя, то модель принимается). Далее строятся непараметрические оценки регрессии вида, учитывающие все большее и большее число s предыдущих выходных сигналов (которые выступают в качестве аргументов). Для проверки предлагаемого алгоритма была проведена имитация линейного динамического объекта, в результате чего получена выборка зашумленных значений входного и выходного сигналов некоторого объема. Помеха накладывалась следующим образом: измерялся интервал изменения сигнальной части, задавался уровень помех (от 0 до 1). С помощью генератора случайных чисел формировался вектор (размерность вектора совпадала с объемом выборки) значений равномерно распределенной на интервале случайной величины, который впоследствии складывался с вектором значений сигнальной части. Имитируемый объект описывался дифференциальным уравнением третьего порядка, что априори предполагалось неизвестным. Информация об уровне помех отсутствовала. По выборочным данным было проведено непараметрическое исследование порядка дифференци ального уравнения путем построения моделей. Наилучшее (минимальное) значение среднеквадратичного критерия достигнуто при учете двух предыдущих шагов, что соответствует второму порядку дифференциального уравнения, однако, следует заметить, что это значение практически такое же, как и в случае трех предыдущих шагов, включаемых в модель (аналог дифференциального уравнения третьего порядка). Были проведены исследования работы алгоритма для разного уровня помехи, действующей в каналах измерений, а также для различного объема и информативности выборки (частота дискретных измерений входного и выходного сигналов). В случае достаточно часто снимаемых измерений (выборка в этом случае является более информативной и позволяет лучше прослеживать динамику объекта моделирования) наименьшее значение среднеквадратичного критерия достигается при включении в модель трех предыдущих измерений выхода объекта. Это соответствует третьему порядку дифференциального уравнения (напомним, что сымитированный объект описывался дифференциальным уравнением третьего порядка). При увеличении шага дискретизации измерений динамика прослеживается хуже, что влияет на точность определения порядка дифференциального уравнения. Тем не менее, определяемый порядок близок к истинному, и полученная модель даже в таких случаях является адекватной. Работоспособность предлагаемого метода проверена также для случая разного уровня помех, действующих в каналах измерений. Был рассмотрен случай отсутствия помех, а также случаи незначительной (10% от полезного сигнала) и большой (80%) помехи. В тех случаях, когда помеха небольшая, либо вовсе отсутствует, определяемый порядок дифференциального уравнения, описывающего поведение исследуемого объекта, совпадает с истинным. При большой помехе качество выборочных данных снижается, что приводит к снижению точности определения порядка (отметим, что большие помехи создают дополнительные трудности построения адекватной модели объекта и в случае других часто применяемых методов моделирования). Таким образом, основным фактором, влияющим на работоспособность предлагаемого метода определения порядка, является качество (информативность, точность) выборочных данных, что естественно, так как выборка – это единственная априорная информация, которой обладает исследователь. Однако даже в случае несовпадения истинного и получаемого порядка дифференциального уравнения, построенная модель может оказаться адекватной, например, за счет проверки значимости коэффициентов. Следует также отметить, что на практике истинный порядок дифференциального уравнения неизвестен, что зачастую приводит к ошибкам выбора структуры модели, тем не менее, если результаты моделирования устраивают заказчиков, модель принимается.

3. Построение параметрической модели объекта. Проверка адекватности полученной модели.

Последним этапом предлагаемого метода является построение параметрической модели объекта. В частности, так как структура модели определена ранее методами непараметрического моделирования, задача сводится к нахождению оценок неизвестных параметров модели. Представим структуру модели (дифференциальное уравнение, известное с точностью до параметров) в виде разностного уравнения, так как этот тип модели является наиболее простым, но имеет довольно общий характер. Применяя метод наименьших квадратов (в работе рассматривался наиболее простой случай некоррелированных равноточных измерений), получим уравнение для вектора оптимальных оценок параметров модели. В частном случае, когда объект описывался дифференциальным уравнением. Наконец, ставится вопрос об адекватности полученной модели. Данная проверка может быть осуществлена по одному из многочисленных критериев адекватности модели регрессии. В данной работе в качестве характеристики точности подбора параметрической модели регрессии являлось так называемое значение. Во всех рассмотренных случаях модель оказывалась адекватной. Однако, при больших помехах, когда порядок был определен как пятый, коэффициенты при старших производных были близки к нулю (по сравнению с остальными), и исключение из модели соответствующих членов не повлияло на ее адекватность. Осуществление проверки значимости коэффициентов в некоторых случаях позволяет упростить получаемую модель (существует множество статистических пакетов обработки данных, позволяющие осуществлять проверку значимости коэффициентов и адекватности регрессии различными методами). Проверка также может быть сделана на основании F-критерия или t-критерия значимости регрессии, где выбор уровня значимости предоставляется исследователю.

Заключение.

В работе исследован метод построения параметрической модели линейного динамического объекта, базирующийся на непараметрическом подходе предварительного определения структуры модели. По сравнению с наиболее распространенным способом выбора структуры (перебор всех возможных вариантов) предлагаемый метод требует значительно меньше машинного времени, а лежащие в его основе расчеты гораздо проще (построение непараметрической модели во многих случаях является задачей менее сложной, нежели выбор структуры модели и настройка ее параметров, особенно в случае высоких порядков дифференциальных уравнений). Кроме того, не требуется постановка эксперимента (создания оптимальных планов покачивания), которая на многих реальных объектах является дорогостоящей, либо вовсе невозможна. Измерение значений входных и выходных сигналов (являющееся единственной необходимой информацией для построения модели) в настоящее время не составляет особой проблемы, даже в случае малоинформативной обучающей выборки (небольшой объем) построенная модель оказывалась адекватной. Проверена работоспособность алгоритма и в случае сильного зашумления снимаемых данных. Вопрос о выбросах не рассматривался, тем не менее, предполагается возможность использования робастных непараметрических оценок для более точного определения порядка дифференциального уравнения, описывающего объект. Неточности в определении порядка зачастую могут быть устранены проверкой адекватности модели и значимости коэффициентов, что во всех отношениях задача более простая, чем построение многочисленных моделей для выбора наилучшей из них.




Похожие материалы
Теоремы о среднем, Раскрытие неопределенности
Пользуясь разложением подынтегральной функции в ряд Маклорена, вычислить интеграл с точностью до 0,001 - решенный пример
Конические поверхности второго порядка
Неравенство Коши-Буняковского
Биноминальный закон распределения вероятностей

Категория: Математика | Добавил: mangust13 | Теги: Линейный динамический объект, метод построения математической мод
Просмотров:1234 | Загрузок: 0 | Рейтинг: 0.0/0
  
Всего комментариев: 0
 
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Меню сайта
Шпаргалки

>Шпаргалки

ПОДЕЛИТЬСЯ