АльфаОмега

база знаний!

Приветствую Вас, Гость | RSS
Форма входа
Логин:
Пароль:
...


1с бухгалтерия [12]Английский язык [6]
Банковское дело [22]Безопасность жизнедеятельности [12]
Биология [7]Бухгалтерское дело [166]
Бухгалтерский учет [129]Информатика [91]
Инновационный менеджмент [12]История экономики [80]
История экономических учений [162]Концепции современного естествознания [54]
Конфликтология [18]Культурология [45]
Линейная алгебра [72]Линейное программирование [7]
Макроэкономика [43]Маркетинг и реклама [68]
Математическая статистика [21]Математический анализ [50]
Менеджмент [141]Микроэкономика [39]
Мировая экономика [85]Моделирование портфеля ценных бумаг [19]
Основы предпринимательства [44]Отечественная история [39]
Политология [27]Правоведение [74]
Прикладные программы [21]Психология и педагогика [159]
Региональная экономика [81]Социология [58]
Теория вероятностей [53]Теория оптимального управления [3]
Управление организацией [35]Физическая культура [42]
Философия [157]Финансовый анализ [99]
Финансы и кредит [236]Численные методы [8]
Эконометрика [15]Экономика предприятия [70]
Экономико математическое моделирование [48]Экономическая география [69]
Экономическая теория [99]Экономическая политика [23]
Юриспруденция [20]Другие предметы [39]

Непрерывные случайные величины



(55.9 Kb), 11.03.2012, 23:35
Непрерывные случайные величины.
Случайная величина, значения которой заполняют некоторый промежуток, называется непрерывной.
В частных случаях это может быть не один промежуток, а объединение нескольких промежутков. Промежутки могут быть конечными, полу-бесконечными или бесконечными, например: (a; b], (– ; a), [b;), (–; ).
Вообще непрерывная случайная величина – это абстракция. Снаряд, выпущенный из пушки, может пролететь любое расстояние, скажем, от 5 до 5,3 километров, но никому не придёт в голову измерять эту величину с точностью до 0,0000001 километра (то есть до миллиметра), не говоря уже об абсолютной точности. В практике такое расстояние будет дискретной случайной величиной, у которой одно значение от другого отличается по крайней мере на 1 метр.
При описании непрерывной случайной величины принципиально невозможно выписать и занумеровать все её значения, принадлежащие даже достаточно узкому интервалу. Эти значения образуют несчётное множество, называемое «континуум».
Если  – непрерывная случайная величина, то равенство  = х представляет собой, как и в случае дискретной случайной величины, некоторое случайное событие, но для непрерывной случайной величины это событие можно связать лишь с вероятностью, равной нулю, что однако не влечёт за собой невозможности события. Так, например, можно говорить, что только с вероятностью «нуль» снаряд пролетит 5245,7183 метра, или что отклонение действительного размера детали от номинального составит 0,001059 миллиметра. В этих случаях практически невозможно установить, произошло событие или нет, так как измерения величин проводятся с ограниченной точностью, и в качестве результата измерения можно фактически указать лишь границы более или менее узкого интервала, внутри которого находится измеренное значение.
Вероятность, отличная от нуля, может быть связана только с попаданием величины в заданный, хотя бы и весьма узкий, интервал. Здесь можно привести сравнение с распределением массы вдоль стержня. Отсутствует масса, сосредоточенная, скажем, в сечении, расположенном на расстоянии 20 см от левого конца стержня, имеет смысл говорить лишь о массе, заключённой между сечениями, проходящими через концы некоторого промежутка.
Пусть  – непрерывная случайная величина. Рассмотрим для некоторого числа х вероятность неравенства х <  < х + х
P(х <  < х + х).
Здесь х – величина малого интервала.
Очевидно, что если х  0, то P(х <  < х + х)  0. Обозначим р(х) предел отношения P(х <  < х + х) к х при х  0, если такой предел существует:
(1)
Функция р(х) называется плотностью распределения случайной величины. Из формулы (1) следует равенство, справедливое для малых величин х, которое также можно считать определением функции р(х):
P(х <  < х + х) p(x)х (2)
Очевидно, что p(x) – неотрицательная функция. Для определения вероятности того, что случайная величина  примет значение из промежутка [a, b] конечной длины, нужно выбрать на промежутке произвольные числа x1, х2,, хn удовлетворяющие условию а=х0<х1<x2<<xn<b=xn+1. Эти числа разобьют промежуток [a, b] на n+1 частей, представляющих собой промежутки [х0, х1), [х1, х2), ,[хn, b]. Введём обозначения:
х0= х1 – х0, х1= х2 – х1, , хn = b – хn,
и составим сумму . Рассмотрим процесс, при котором число точек разбиения неограниченно возрастает таким образом, что максимальная величина хi стремится к нулю. Будем считать функцию p(x) непрерывной на промежутке (а; b), тогда пределом суммы будет определённый интеграл по промежутку [a; b] от функции p(x), равный искомой вероятности:
P(a    b) = (3)
Это равенство можно также рассматривать как определение функции р(х). Отсюда следует, что вероятность попадания случайной величины в любой интервал (х1, х2) равна площади фигуры, образованной отрезком [х1, х2] оси х, графиком функции р(х) и вертикальными прямыми х = х1, х = х2, как изображено на рисунке 1.
Если все возможные значения случайной величины принадлежат интервалу (а; b), то для р(х) – её плотности распре¬деления справедливо равенство

Для удобства иногда считают функцию р(х) определённой для всех значений х, полагая её равной нулю в тех точках х, которые не являются возможными значениями этой случайной величины.
Плотностью распределения может служить любая интегрируемая функция р(х), удовлетворяющая двум условиям:
1) р(х)  0;
2)
Последнее свойство называется свойством нормировки. Можно задавать случайную величину, задавая функцию р(х), удовлетворяющую этим условиям.
В качестве примера рассмотрим случайную величину , равномерно распределённую на промежутке [a; b]. В этом случае р(х) постоянна внутри этого промежутка:

По свойству 2) функции р(х)

Отсюда . График функции р(х) представлен на рисунке 2.
Во многих практических задачах встречаются случайные величины, у которых возможные значения не ограничены сверху и снизу. В этом случае кривая распределения располагается над осью х и при х   и х  –  асимптотически приближается к этой оси, как изображено на рисунке 1. Вероятность того, что случайная величина  примет значение, меньшее некоторого числа а, равна площади фигуры, заключённой между кривой распределения и горизонтальной координатной осью слева от точки а. Будем считать, что такая площадь существует.
Пусть  – непрерывная случайная величина. Функция F(x), которая определяется равенством
,
называется интегральной функцией распределения или просто функцией распределения случайной величины . Непосредственно из определения следует равенство . Формула производной определённого интеграла по верхнему пределу в данном случае приводит к соотношению . Плотность распределения р(х) называют дифференциальной функцией распределения.



Похожие материалы
Последовательный массив. Поиск в последовательном массиве.
Сущность психоаналитической философии
Фотоэлектрические явления в МДП-структурах
Шпаргалка по технологии програмного обеспечения
Семантические модели данных. Модель «сущность-связь»

Категория: Другие предметы | Добавил: RuStudent
Просмотров:1800 | Загрузок: 295 | Рейтинг: 5.0/1
  
Всего комментариев: 0
 
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Меню сайта
ПОДЕЛИТЬСЯ
...