АльфаОмега

база знаний!

Приветствую Вас, Гость | RSS
...
Форма входа
Логин:
Пароль:


1с бухгалтерия [12]Английский язык [6]
Банковское дело [22]Безопасность жизнедеятельности [12]
Биология [3]Бухгалтерское дело [166]
Бухгалтерский учет [129]Информатика [91]
Инновационный менеджмент [12]История экономики [80]
История экономических учений [162]Концепции современного естествознания [54]
Конфликтология [18]Культурология [45]
Линейная алгебра [72]Линейное программирование [7]
Макроэкономика [43]Маркетинг и реклама [68]
Математическая статистика [21]Математический анализ [50]
Менеджмент [141]Микроэкономика [39]
Мировая экономика [85]Моделирование портфеля ценных бумаг [19]
Основы предпринимательства [44]Отечественная история [39]
Политология [27]Правоведение [74]
Прикладные программы [21]Психология и педагогика [159]
Региональная экономика [81]Социология [57]
Теория вероятностей [53]Теория оптимального управления [3]
Управление организацией [35]Физическая культура [42]
Философия [157]Финансовый анализ [99]
Финансы и кредит [236]Численные методы [8]
Эконометрика [15]Экономика предприятия [70]
Экономико математическое моделирование [48]Экономическая география [69]
Экономическая теория [99]Экономическая политика [23]
Юриспруденция [20]Другие предметы [39]

Формула полной вероятности и формула Байеса. Примеры



Пример:
Однотипная продукция выпускается 3-мя цехами, производительности которых относятся как 1:3:2. Вероятность брака в каждом цехе составляет соответственно 1, 2 и 3%. Все изделия хранятся на одном складе. На удачу одно изделие выбирается на складе. Какова вероятность, что оно браковано.
Решение:
Пусть событие Е может произойти с любым из событий A1, A2, и т.д., образующих полную группу. Тогда полная вероятность события Е определяется формулой:
Пусть в условиях предыдущего примера известно, что наудачу взятое изделие оказалось бракованным.
А) какова вероятность, что оно было сделано в первом цеху.
Б) если известно, что изделие браковано, в каком цеху вероятнее всего было сделано.
Ответ на поставленный вопрос (переоценка гипотез при дополнении информации) дают формулы Байеса.
Доказательство:
Выражая неизвестную величину через известные, получаем формулу 13, что и требовалось доказать.
С помощью формулы 13 отвечаем на вопрос задачи.




Похожие материалы
Исследовать функцию и построить график - готовое решение
Задачи по теории вероятности и математической статистике с решением
Правило Крамера для решения систем линейных уравнений
Формула полной вероятности и формула Байеса. Примеры
Найти угловой коэффициент касательной к графику функции - решенные примеры

Категория: Теория вероятностей | Добавил: alfa2omega
Просмотров:2562 | Загрузок: 248 | Рейтинг: 0.0/0
  
Всего комментариев: 0
 
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Меню сайта
Шпаргалки

>Шпаргалки

ПОДЕЛИТЬСЯ